
Model Rocketry Telemetry and Launch Control
ECE 568 Spring 2025 Research Project Report

Colin McKinney
Team Leader

mckinn88@purdue.edu

Chase Engle
engle29@purdue.edu

Chris Silman
csilman@purdue.edu

Collin Hoffman
cbhoffma@purdue.edu

Cole Thornton
thornt45@purdue.edu

Brandon Crudele
bcrudele@purdue.edu

William Li
li5005@purdue.edu

Abstract—This paper describes our work in developing a
pair of embedded systems for use in amateur rocketry: a flight
computer and a ground station. The flight computer featured
several integrated sensors to measure flight characteristics,
atmospheric conditions, and landing location. The ground
station featured launch control mechanisms for safety and
the ability to display data. We designed the two systems
to be linked using the LoRa protocol, allowing for real-time
data streaming and commands between both systems. We
describe the overall system design and give both qualitative and
quantitative evaluations. Our system can be the basis for future
work of other rocket enthusiasts or used by fellow educators.

Index Terms—Model rocketry, LoRa, MCU, telemetry

I. Introduction and Motivation

Our project goals were to develop a pair of embedded
systems for use in model rocketry. One system is a ground
station capable of receiving data from the rocket and
sending commands, such as to arm or disarm the ignition
system or to launch the rocket. The system onboard
the rocket featured several integrated sensors to measure
flight characteristics, atmospheric conditions, and landing
location. We designed the two systems to be linked using
the LoRa protocol, allowing for real-time data streaming
or commands between the two systems.

In designing our system, we researched existing com-
mercial solutions. We focus on two: the JollyLogic Al-
timeterThree and the Multitronix TelemetryPro family
of products. The JollyLogic unit is inexpensive (∼$100)
but limited in the types of data it collects and displays.
It is also only a flight unit and has no capability of
controlling rocket ignition. Multitronix units are much
more capable and robust, but are also dramatically more
expensive (∼$3,000). Our goal was to design a system with
capabilities similar to those of the Multitronix unit but
at a cost closer to the JollyLogic unit.

The main application for our project is amateur rocketry
and its potential uses in education. One team member
(McKinney) is an educator and has used model rocketry
as part of several courses. Model rocketry is also often used
in youth organizations (such as Scouting) and education
(such as high school and university physics). Our system

can be the basis for future work of other rocket enthusiasts
or used by fellow educators.

II. Methodology

A. Safety and Regulatory Requirements
Throughout the project, the team worked under existing

regulations that govern the use and operation of model
rocket devices and radio transceivers. These include FAA
guidelines for Class 1 model rockets, which allow a total
mass not to exceed 1500 g, a fuel mass not to exceed
125 g, and construction from frangible materials such as
wood and plastic (FAA 7400.2 31-1). These regulations
also dictate requirements when operating in the proximity
of an airport; this was especially important for our
project, since the Purdue airport and nearby airspace
are widely used for training. We also were aware of the
FCC and international regulations on radio transmissions.
The LoRa radio system we used is part of the 33 cm
band reserved for scientific use, which does not require
specific FCC licensing. However, two members of the
team, McKinney and Silman, are licensed amateur radio
operators.

With respect to range and launch safety, the team fol-
lowed common sense guidelines promoted by the National
Association of Rocketry.

B. Hardware: Flight
1) Rocket and Motor: We chose an Estes “Big Daddy”

rocket kit as our flight platform. This model has a very
large fuselage with an inner diameter of 74 mm, giving us
a large space for an avionics bay. We built two versions
of the rocket, named Pete I and Pete II. Pete I was used
for fit testing and completed one launch to test flight
characteristics. Based on changes in the design of the
avionics bay, we modified the design and construction
of Pete II. It features laser-cut wood bulkheads (instead
of the thick paper used in Pete I) and integrated wires
running from the payload area to the rear bulkhead.
These wires are connected internally to the ignition control
system and externally to the rocket motor igniter.

1

mailto:mckinn88@purdue.edu
mailto:engle29@purdue.edu
mailto:csilman@purdue.edu
mailto:cbhoffma@purdue.edu
mailto:thornt45@purdue.edu
mailto:bcrudel@purdue.edu
mailto:li5005@purdue.edu

For rocket engines, we used several models of solid
propellant motors manufactured by Estes. The are encased
in rugged cardboard and include a rudimentary thrust
nozzle and ejection charge.

The ejection charge detonates after the main propellant
load has been depleted, sometimes after a short delay. The
pressure from the ejection charge is responsible for forcing
the rocket nosecone off, allowing the recovery mechanism
to open. Figure 1 shows the nozzle of the engine and the
engine encasement. The naming convention used by Estes
is of the form XN-D, where X is a letter, N a number, and
D a delay time in seconds. The letter and number indicate
the class of engine and approximate total impulse, with
letters further in the alphabet being larger in size and
capable of greater total impulse. During the project, we
used A8-3 (for an ignition static fire test, Boiler 1 and
2), C11-3 (for dummy payload launch, Boiler 3), D12-3
(Boiler 4-6), D12-0 (Boiler 7 and 8), and E12-3 engines
(Boiler 9).

Fig. 1. Estes D12 engine

The small hole shown in Figure 1 functions as the
exhaust nozzle. To ignite the rocket, an igniter is inserted
into this hole and held in place with a small plastic plug
or with tape.

Due to the large size of the avionics bay, we needed to
extend the fuselage to allow enough space for the recovery
mechanism. We chose to design a nosecone extension
instead of a fuselage extension. The nosecone extension is
permanently bonded to the nosecone using a cyanoacrylate
adhesive.

Figure 2 shows the finished rocket. The visible red
plastic part is the nosecone extension.

2) Flight Computer and Sensors: The flight computer
used the Adafruit RP2040 with integrated LoRa radio
(see Figure 6). It was linked to several sensors using
STEMMA QT connectors, such as a 9-axis degree of
freedom sensor, a pressure/altitude sensor, a GPS sensor,

Fig. 2. Pete II configured for launch

and a temperature/humidity sensor. The MCU controlled
the ignition relay using a single GPIO pin. Figure 3 shows
some of the sensors mounted in a prototype of the avionics
bay.

Fig. 3. Avionics bay shown in CAD and as a completed 3D-printed
prototype

2

3) Avionics Bay: We designed a 3D-printable avionics
bay assembly to protect the electronics and ensure reliable
parachute deployment. The assembly consists of a main
bay, two O-rings, sensors, batteries, wiring, a cardboard
tube, and a protective sleeve.

As shown in Figure 3, the avionics bay is printed from
PLA plastic and reinforced with threaded brass inserts.
Sensors are mounted at threaded points along the interior
walls, allowing for easy installation and handling during
prototype development. To protect the electronics, O-rings
are placed at both ends of the bay, forming a seal. A 3D-
printed PLA sleeve surrounds the bay, shielding it from
the high-temperature gases generated during flight.

To enable parachute deployment, a pass-through chan-
nel was integrated into the avionics bay to direct the hot
ejection charge gases toward the nosecone. This design
reduced the available payload volume, creating challenges
for hardware clearance. We addressed this by performing
tolerance analysis and iterating through several design
versions to achieve a proper mechanical fit. Given the low
glass transition temperature of PLA and the thin walls
surrounding the channel, a removable cardboard tube was
added as thermal insulation. This insert protects the bay
from heat damage during deployment and can be easily
replaced, allowing the avionics assembly to be reused
across multiple flights. This design proved successful, as
no thermal or mechanical damage to the avionics bay or
flight computer were observed.

4) Ejection Charge and Recovery Mechanism: After
engine burnout, the motor ejection charge is triggered
to eject the nosecone and allow the recovery system
to deploy. The ejection charge gas is very hot. Most
model rocket enthusiasts use paper wadding to protect
the parachute from this hot gas, and initially we did, too.
In the Boiler 4 launch, using Pete I, the ejection charge was
not sufficient to force the nosecone off and the parachute
out of the fuselage, resulting in the paper wadding catching
fire and the plastic parachute melting. For Pete II, we
switched to a nylon parachute and a reusable heavy cloth
parachute protector.

5) Ignition Control: Ignition of the rocket engine was
facilitated by a relay. The relay is controlled by a GPIO
pin on the MCU. When triggered, the relay closed a circuit
between a 9 V ignition battery and the engine igniter. This
caused the igniter to heat and ignite the propellant inside
the engine.

After pressing the LAUNCH button on the ground
station, an RF signal is sent to the rocket. This signal
initiates the closing of the relay to ignite the engine. If the
rocket fails to move after 10 seconds, the on-board system
moves into the IGNITION FAILURE state. In this state,
the relay will open, preventing the rocket from launching
unpredictably and ensuring the ignition terminals on the
base of the rocket are not energized. The rocket signals
the ignition failure to the ground station, which commands
both it and the rocket computers to reset. If the rocket

does move, the state machine transitions to flight and then
eventually recovery.

C. Hardware: Ground

Cost, capability, and performance are important factors
in any project development. For the ground station,
we chose to use commercial off-the-shelf products from
Adafruit, which eased initial development through their
I2C STEMMA QT connectors. For the MCU, we chose the
Feather RP2040 with RFM95 LoRa Radio since the built-
in radio module reduced total footprint. Additionally,
the MCU provided enough processing power, speed, and
RAM to accomplish our project objectives. Other MCUs,
such as the Feather M0 variant with an ATSAMD21G18
chip, were lacking in speed, EEPROM, and a built-in I2C
STEMMA QT connector.

1) Ground Computer Sensors: The ground station con-
sists of three total data collection sensors. These sensors
are the AHT20 Temperature and Humidity, BMP390
Temperature and Pressure, and the MiniGPS GNSS mod-
ule. The objective of these sensors was to give the user
enough information to determine the current launch site
weather conditions. I2C was used for all communications
between the data collection sensors and the MCU. The
overlap between sensors for their data was useful for
dual redundancy and provided an averaged, more accurate
display of site information.

2) Ground Computer Interface: The ground station
contains a 24-pulse rotary encoder, a key switch, and a
button for user input. These can be seen in Figure 5. These
components provided ways to control the ground station
state. Feedback was given to the user via the two OLED
screens attached to the MCU.

The rotary encoder was chosen as it provided an easy
way to accept multiple different types of user inputs
while still providing a small form factor. It utilized two
hardware interrupts to determine direction changes and
could be pressed to act as a button. These encoder
actions directly controlled the main screen OLED. Other
options considered were an attachable keyboard or button-
controlled system, however, these would require more
hardware for interfacing with the MCU or more GPIO
pins than the MCU provided.

The key switch falls into our “safety is paramount”
approach, as requiring physical key access helps provide
positive control over the launching of the rocket. The
button, which is the final user input before initializing
a launch, can illuminate to alert the user that the rocket
is ready for ignition.

3) Ground Computer PCB and Housing: The ground
station printed circuit board (PCB) was designed in
KiCAD and significantly reduced the amount of wiring
required and provided a small form factor for fitting all the
modules into an enclosure. The PCB was a large breakout
board of the already existing pins on the Feather.

3

Fig. 4. Inside the Ground Station Enclosure

As shown in Figure 4, all modules (temp, GPS, MCU)
were slotted into socket headers, and the components on
the lid of the enclosure used spade-quick connectors that
fed into the PCB’s sockets. These allowed for the relatively
easy removal of the lid, and the removal and connection
of components.

A 3D-printed ground station enclosure was designed
in SolidWorks to house the PCB and user interface
components. Design for assembly principles and tolerance
analysis were applied to ensure accurate fit and ease
of assembly. The OLED screens, LED, rotary encoder,
ignition switch, and launch button are mounted to the
enclosure panel, where there is adequate access. The panel
is then wired to the PCB and inserted into the enclosure
base, where it is secured using a friction fit.

Fig. 5. Ground station shown in CAD and as a completed 3D-printed
prototype

D. Radio Frequency (RF) Communication
RF communication for the project used a long-range

(LoRa) radio link. LoRa communication uses low-power
chirp spread spectrum (CSS) signal modulation with
demonstrated effectiveness in a variety of long-range wide-
area network (LoRaWAN) and Internet of Things (IoT)
applications. The proven IoT applications described in
[1] included space-to-ground communication and envi-
ronmental monitoring. The 915 MHz (33 cm) frequency
band was selected for its designation as an international
Industrial Scientific and Medical (ISM) band, which does

not require an operating license in North America. All
project design, test, and evaluation was completed within
the continental United States (CONUS) with live-fire
rocket and RF link testing in West Lafayette, IN.

A project design requirement was to send and receive
data between the rocket flight computer and the ground
station for commands and telemetry feed. The project
implemented this using twin MCUs (Adafruit Feather
RP2040 with 915 MHz RFM95 LoRa Radio), shown in
Figure 6, which were integrated into the flight computer
and the ground station.

Fig. 6. Adafruit Feather RP2040 RFM95 with LoRa radio and spiral
antenna

The flight computer and ground station were designed
to use distinct compatible antenna form factors. The flight
computer MCU used a simple spring antenna with nominal
power and gain values of 5 W and 2.15 dBi. The ground
station used a 33 cm wavelength monopole wire antenna.

Implementing [2], the project design paired the flight
computer and ground using McCauley’s existing Radio-
Head Arduino code library for the RFM95 radio driver
class described in [3]. We also evaluated the RHRe-
liableDatagram manager sub-class described in [4] for
addressed, acknowledged, retransmitted datagrams. This
solution seemed ideal for critical transmissions where
confirmation is required, such as commands from the
ground station to the rocket, but was less suited to the
real-time requirements of data transmission. This is an
area for future work.

E. Software and Control Flow
1) Integrated State Machine: For software, the idea

was to use a synchronized state machine on both the
ground station and the flight computer. To achieve this,
all transitions that occurred on the flight computer were
sent to the ground computer through RF to indicate
its new state and the status of the sensors. If a state
transition was initiated by the ground computer, the flight

4

computer would always look for that message in a wait
state, and upon reception, it would notify the ground
computer of the transition. The final transition case was
from launch to flight and subsequently flight to recovery.
These two transitions were determined by the 9-axis
degree of freedom sensor (BNO055). The flight computer
would transition to the flight state when the sensor saw a
speed greater than noise for at least 3 readings. Similarly,
the flight computer would transition to the recovery state
when it saw a speed within “noise range” for more than
10 polls. This large, shared state machine made managing
information much easier and increased the safety of the
launch sequence. A subset of the state machine is given
in 7, with the full machine in the appendix.

Mode 0:
Bootup

GROUND FLIGHT

Mode 0:
Bootup

Sensor
initialization

And
confirmation

of
initialization

Mode 1: Safe

POWER ON SELF TEST COMPLETE

No data
collection.

Just polling
for the launch

sequence

Arm Command Received

Mode 2: Arm

DOF Sensor:
Initialize position

to 0. Intialize
average speed to
0. Initialize peak

speed to 0.
Initialize single

reading per 10m
linked list or pre

declared array set
to all 0's.

Altitude and pressure
Sensor:

Initialize altitude to 0.
Average barometric

presure to 0. Initialize
single reading per

10m linked list or pre
declared array set to

all 0's

Temperature and humidity
Sensor:

Averages set to 0. Single
reading per 10m (based on

altitude sensor info)
(consider changing this unit)

linked list or pre declared
array set to all 0's

Send signal to ground computer these tasks are complete

Mode 3:
Ready For

launch

No data
collection.

Just polling
for the launch

command

Launch command received

Mode 4:
Launch

Ignite that

Mode 5:
Flight

Rocket is ignited

DOF Sensor:
Collecting total

positional change
info. Collecting
average speed
data. Collecting

peak speed data.
Collecting speed
per 10m linked list

or pre declared
array data

Altitude and pressure
Sensor:

Collecting altitude
data saving peak.

Average barometric
pressure being

calculated. Saving
single reading per

10m linked list or pre
declared array

Temperature and humidity
Sensor:

Collecting average of each.
Collecting single reading per

10m in linked list or pre
declared array set to all 0's

GPS:
NOTHING

CBM edit: Use GPS to
calibrate altitude sensor

pressure?

Rocket has landed (detected by alt itude == 0 (for sure w ill require rounding) ??)
CBPM edit: can also check velocity f rom GPS or vert ical velocity f rom 9 axis, but
these might not be zero, e.g. landing in tree? NICE I think velocity being 0 is a good idea

GPS:
GETTING

COORDINATES AND
SENDING

Mode 6: Recovery

Verify data received

Mode 7: post- f light

RF:
Resend all packets

GO TO STATE 1

Sensor
initialization

Verify key is
in disarmed

position

Mode 1: Safe

POWER ON SELF TEST COMPLETE

Collect initial
data of
ground

computer
location,
pressure,
altitude

Mode 2: Arm

Switch turned to ARM

Transmit
Arm

command

Mode 3:
Ready For

launch

Wait for ACK
f rom rocket

Illuminate
unreasonably

sized red
button

Mode 4:
Launch

Launch button pressed

Send launch
command

Mode 5:
Flight

Recieve f light signal f rom rocket?

Receive data
from rocket

Mode 6:
Recovery

Calculate
relative

bearing of
landing site,
display on

screen

Mode 7: post
f light

Receive
validation of
all telemetry

packets

When rocket recovered

Fig. 7. Subset of Integrated State Machine

2) Sensor Architecture: Because each sensor was
worked on one at a time, they each have their own class
definition. With more time, the sensors could have used
a common class that they all inherited and iterated on.
The basic idea for the sensors was to have 3 common
functions. The first function, initialize would be called
during the bootup sequence and it would make sure that
the sensor was connected and could be initialized. The
next function, setInitialDataValues would set up the data
structures that would be used for collecting information.
The common data structures were a float that would
contain the maximum or minimum value for that sensor,
an array for maintaining a rolling average, and an array
for maintaining a data point at each meter. The final
common function was collectData, in this function, we
would fill in the data structures listed above. The rolling
average and peak were found using very typical means.
To maintain the data point at each meter, the altitude
sensor’s current height would be passed to each of the
sensor collect data functions and then would be used as
the most current index in a data array. At the end of each
loop, a class called the RF manager would look into all of

these classes’ data structures and see if there was anything
new to report. If there was, it would attempt to send it
to the ground computer so that it could be displayed to
the user.

3) UI Architecture: The ground station user interface
architecture is made up of two OLED screens and is
controlled by a 24-pulse encoder. There were two screen
variants in our design, defined by two separate classes, the
MainScreen and AuxiliaryScreen. These were created to be
as modular as possible; hence, there is no incompatibility
or coupling of screen designs if more than one instance of
each exists. If the user had more than two screens (easily
made possible through the STEMMA QT connector), they
could set up additional auxiliary screens to display more
data if required for their use case, provided they configured
each one to use a separate I2C address.

Fig. 8. Ground Station OLED Screens w/ Data

The internal architecture of the screen consists of
easy-to-read methods with a simple pointer management
system for keeping track of where everything is.
Each screen page has a custom and uniquely defined
ScreenNavInfo struct that was used to identify the indices
of the menu options on the screen and specify the screen
that the index should jump to.

All input to the screen was processed in one method,
whose inputs leaned on custom enumerations, making it as
easy to read as possible. This is all to reduce the amount
of code debt in the future.

III. Evaluation
Project design of experiment included a build-up

approach of iterative hardware and software design, test,
and redesign or debug, presented in Figure 9. Verification
and validation of specified or intended behavior was
performed before proceeding to follow-up testing. Ground
tests, including simulation and modeling, were completed
before live-fire ground tests. The rocket air vehicle
was obtained and initially tested as original equipment
manufacturer (OEM), Estes nominal design, then modified
for avionics bay and payload fit. Ground testing of discrete

5

embedded system components was first accomplished in
a bench environment prior to avionics bay integration.
Flight computer and ground station functionality were
independently verified prior to integration and RF link
tests.

Fig. 9. Tests and Test Conditions Matrix

Data was collected using bench serial monitor output
for discrete testing, in-flight telemetry received by
the ground station, and comparison ride-along data
using a commercial off-the-shelf (COTS) Jolly Logic
AltimeterThree unit, which accompanied the rocket flight
computer payload. Simulation data was created using
OpenRocket v23.09 modeling software and considered
truth data for quantitative comparison.

A. Static Fire and Flight Tests
Static fire and flight tests were conducted outdoors

in vicinity of West Lafayette, IN and consisted of a
total of nine experimental missions. Mission results are
summarized in Figure 10.

Fig. 10. Mission Log

Deficiencies encountered included multiple ignition
failures due to faulty OEM igniters as well as unreliable
RF radio link logic, which required troubleshooting and
resulted in the addition of fault detection code. While
flight computer functionality was verified from on-board
post-flight data download, issues remained with ground
station reliable capture of telemetry. Rocket vehicle weight
due to payload remained a significant constraint on apogee
altitude and time remaining after parachute deployment
before ground impact.

Overall design objectives were only partially met, as
depicted in Figure 11.

B. Physics and OpenRocket Simulations
Based on the first flight test, and after measuring final

mass values of the avionics bay, nosecone extension, etc.,

Fig. 11. Design Objectives Summary

we realized that the rocket mass was significantly higher
than our initial estimates and expectations. For example,
the dummy weight flight test used two 9 V batteries to
increase the rocket mass to 250 g. Our total mass ended up
being 490 g, so flight performance from the 250 g test was
not going to be useful in predicting future flight values.

Instead of doing another launch with an increased
dummy mass, we did a quick estimate of apogee and
maximum velocity along with more detailed simulations
using OpenRocket. We first used Tsiolkovsky’s equation,

∆v = gIsp ln

(
mwet

mdry

)
, (1)

where mwet is the mass of the rocket with fuel, mdry is the
mass of the rocket without fuel, g is surface gravity (9.81
m/s2), and Isp is the specific impulse of the engine. Solid
fuel motors such as the D12-0 have an approximate Isp of
80 s, a fuel mass of 23.8 g, and a total mass of 40.5 g. This
gives an approximate ∆v of 36 m/s, which, assuming an
instantaneous impulse, would predict a 66 m apogee. The
observed value from the Boiler 4 and 7 launches was on
the order of a 22 m apogee and 20 m/s maximum velocity.
The large difference between these values is due to drag.

OpenRocket uses a sophisticated numerical differential
equations solver. It allows a user to make a schematic
representation of both the rocket geometry and mass
distribution. These together give a much better estimate
of flight characteristics. We started with a schematic of
the standard Big Daddy model by Robert Rummel, then
modified it to include our nosecone extension and extra
payload mass. Figure 12 shows a schematic representation
of our rocket.

Rocket Design

Big Daddy
Stages: 1
Mass (with motor): 536 g
Stability: 1.56 cal / 19.4 %
CG: 31.5 cm
CP: 43.4 cm

Fig. 12. Schematic representation of the rocket in OpenRocket

6

Fig. 13. OpenRocket simulation with a D12-0 engine

Using JollyLogic recorded data from the Boiler 4 launch
(which used a D12-3 engine) as reference values, we
adjusted OpenRocket simulation parameters such as the
drag coefficient. We then ran simulations with a D12-0
engine to predict flight performance before the Boiler 7
launch. Figure 13 shows OpenRocket’s simulation for a
D12-0 engine.

Figure 14 shows the values predicted by the OpenRocket
simulation along with the recorded values from our flight
sensors and the JollyLogic unit for the Boiler 4 and Boiler
7 launches.Selected Results

6

Mission Result Details

Boiler 4 Partial
Success

Apogee ~25 m. Data collection failure.
Parachute deployment occurred too late.

Action: Changed motor, improved code and
data retention methods.

Boiler 7 Success Apogee
16.1 m (flight computer)
22.6 m (Jolly Logic)
18.8 m (OpenRocket)

Peak velocity
7.51 m/s (flight computer)
19.4 m/s (Jolly Logic)
16.5 m/s (OpenRocket)

● RF reliability was a significant
challenge. Opportunity for growth!

● Design system to require two separate
human operators.

● Develop PCBs with IC components.

● Improve sensor calibration and
simulation parameters.

● Utilize auxiliary storage for enhanced
data logging and reliability.

Future Work

Costs excluding rocket, motors, misc. parts:
● Our units: ~$250 ($125 each)
● JollyLogic: ~$100
● Multitronix: ~$3,000

Fig. 14. Summary of Data from Boiler 4 and 7

C. Comparison to JollyLogic Altimeter
The JollyLogic is a small integrated sensor system that

is easy to attach to any rocket payload. Some limitations
to this device are the inability to access the data during the
launch. The JollyLogic can be recovered after the launch,
and only then can the data be viewed using a Bluetooth
connection (AltimeterThree, now discontinued) or on an
integrated screen (AltimeterOne and Two). Our embedded
system uses RF to send flight data to the ground station.
The RF implementation separates the two products and
their processes.

Another difference is the quantity of sensors on
board the JollyLogic. Their product includes velocity,

acceleration, and altitude. As well as these sensors, our
design includes temperature, humidity, and GPS. Since
our design used multiple discrete components and required
a custom avionics bay, the mass and size of our design is
much greater than those of the JollyLogic. However, we
hope that future work will allow us to decrease the form
factor and mass of our solution.

IV. Discussion
A. Limitations of Our Approach

Our approach has some limitations, especially
concerning size, weight, power, and cost (SWaP-C),
the deployment of the system on the rocket, data
reliability and storage, and sensor values.

Due to our system being deployed on small, commercial
rockets, SWaP-C considerations are paramount. As
discussed during our presentation, the performance of
the rocket was hindered by the relatively high mass of
the system payload, thus decreasing peak velocity and
apogee. Part of this high mass was the need to include
a battery onboard to power the system components. Size
also played an important role, as an enclosure had to be
specially designed to fit inside the model rocket. Thus,
this enclosure may not work on other class rockets, which
have smaller or larger body diameters. Finally, the cost
of our system is significantly higher than that of the
commercially available JollyLogic unit, at about 2.5x the
cost.

Additionally, our system currently transmits data in
real-time from the rocket to the ground station via an
RF link, however, this link is not reliable. As a result,
the collected data may be incomplete and, due to data
not being logged locally, cannot be retrieved later. Thus,
the data collected by our system is suitable for certain
amateur use cases, but not for scenarios where full and
accurate data reporting is critical.

B. Important Lessons Learned
Throughout this design experience, the team learned

various practical lessons about the development of
complex and connected systems. With our project, a
significant amount of time was spent debugging various
issues with the sensor and RF system; however, it was
not always clear what the root cause of these issues
was. The team learned that this is incredibly common in
even medium-sized engineering projects such as our own,
let alone large projects with dozens, if not hundreds, of
engineers on staff. We will highlight two famous failures
for comparison: the failure of a Patriot missile battery
during the first Gulf War (1991) and the failure of the
first Ariane 5 launch (1996).

• During the first Gulf War, a US Army Patriot missile
system failed to intercept an Iraqi Scud missile due to
a floating point rounding error that accumulated due
to long operating times. This issue was known before
the war and regular resetting of the system was part of

7

standard procedure. However, the stresses of combat
deployment led one crew to overlook this procedure.
As a result of the intercept failure, 28 U.S. soldiers
were killed.

• The first launch of the Ariane 5 rocket occured at the
Guiana launch site in Kourou, French Guiana. The
Ariane 5 flight computer improperly reused code from
the previous Ariane 4, which had a different launch
profile. This resulted in an overflow error in a variable
that tracked the vehicle’s horizontal velocity. The
launch vehicle began to break up from aerodynamic
stress about 40 seconds into flight, and was then
intentionally detonated by flight controllers.

Our project suffered from similar mistakes. The root cause
of failure to acquire data from the Boiler 4 launch was that
the rocket never transitioned states from LAUNCH to
FLIGHT. This occurred because we forgot to uncomment
out a small section of code designed to detect this
transition. It needed to be commented out for ground-only
testing of the sensor and RF systems (since the rocket
would not be moving), but we failed properly configure the
code for a live flight before launch. This and subsequent
tests revealed other problems, such as the need for
detecting ignition failures and the need to be able to
recover data manually from the rocket using a serial
connection if and when RF transmission failed.

Overall, the experience gave the team a new
appreciation for the complexity of real rocketry and
spaceflight systems, along with a more nuanced
understanding of the circumstances of famous examples
of failure.

C. Reflections on Peer Review
The team reviewed the peer review of our final

presentation as provided by the teaching team. We
definitely concur with the constructive feedback given, but
would like to highlight one point as a limitation of our
project, and hence a direction for future improvement.

Several of the reviewers commented on the small amount
of data given in the presentation. In reality, this was
essentially all the data we were able to collect in our
testing, due to various combinations of programming and
RF issues. We had hoped to be able to present more
comprehensive data obtained from a series of launches. We
attempted to repeat the Boiler 7 launch several times using
the same type of engine, but had a number of ignition
failures, possibly due to a depleted ignition battery. This
lack of repeated data, and hence our inability to conduct
any sort of statistical analysis comparing our data with
reference values from our JollyLogic unit or OpenRocket,
is very much an area for future improvement.

D. Potential Future Work
As mentioned in previous sections, the final system

has several areas of improvement. These areas include

SWaP-C, data reliability and logging, sensor accuracy, and
safety features.

When designing a rocket telemetry system, especially
for smaller model rockets, minimizing the impact of the
telemetry system on the rocket is key. With this in mind,
the size, weight, and power of the telemetry system will
have the most effect on rocket performance and system
integration. As previously mentioned, a special enclosure
was developed to mount the system inside the rocket. This
is not a very modular solution, and decreases the practical
usability of our system. In the future, our team would like
to develop a PCB with only the necessary components
to decrease the size and weight of the system. This will
also improve system modularity, as the system will consist
of a single PCB as opposed to many components wired
together.

The existing RF system does not reliably transmit data
in real-time to the ground station. The team would like
to fix this issue by both improving the reliability of RF
data transfer and logging data to an auxiliary storage unit
on-board the rocket. With this approach, even if data is
not received at the ground station, there is a local copy
available on the rocket.

However, this data is not very useful if it inaccurate. In
the future, the team would like to calibrate the sensors
to ensure that the collected data matches simulated
values and data collected from other sensors, such as
the JollyLogic. Ultimately, this leads to a higher quality
system that is appropriate for actual usage on rocketry
projects.

Finally, the team would like to improve the safety
features of the launch system. Currently, only one human
operator is required for the rocket to be launched.
This poses the hazard of accidental launches, which is
dangerous. The team would like to mitigate this issue
by requiring that two human operators are involved in
the launch sequence. This coordination will ensure that
accidental launches do not occur.

V. Team Contributions
• McKinney (Team lead): Regulatory compliance,

safety, rocket construction, flight testing, OpenRocket
simulations, code editing, document and presentation
editing, task assigning, liaison to teaching team.

• Engle: Flight software, sensor class architecture
• Silman (Ground lead): Ground software, UI

architecture, custom PCB design
• Hoffman: Flight software, presentation design
• Thornton (Flight lead): avionics bay design, nosecone

extension design, ground station enclosure design,
CAD

• Crudele: Flight and ground software, flight testing
• Li (RF lead): RF architecture, hardware/software

integration
• All team members: writing for presentations and

reports, participation in final presentation

8

VI. Conclusion
Our project largely achieved its goals of developing two

embedded systems for use in model rocketry. Multiple
tests and careful analysis of the results highlighted
programming or design deficiencies, which we addressed
with further development and tests. Our latter tests
demonstrated the robustness of our improvements, but
also identified areas where further development or redesign
is warranted. The experience of working on this project
gave us a better appreciation and understanding of
high-profile failures of rockets due to issues with their
own embedded systems.

REFERENCES
[1] A. Maleki, H. H. Nguyen, E. Bedeer, and R. Barton,

“A tutorial on chirp spread spectrum modulation
for lorawan: Basics and key advances,” IEEE Open
Journal of the Communications Society, vol. 5,
pp. 4578–4612, 2024. doi: 10.1109/OJCOMS.2024.
3433502.

[2] “Adafruit Feather RP2040 RFM95.” (May 2023),
[Online]. Available: https : / / learn . adafruit . com /
feather-rp2040-rfm95/using-the-rfm-9x-radio.

[3] “Radiohead: Rhrf95 class reference.” (2025), [Online].
Available: https : / / www . airspayce . com / mikem /
arduino/RadioHead/classRH__RF95.html.

[4] RadioHead: RHReliableDatagram Class
Reference. [Online]. Available: https : / / www .
airspayce . com / mikem / arduino / RadioHead /
classRHReliableDatagram.html.

Appendix
The order of team members listed was the order they

joined the project team. No other meaning from the order
should be inferred.

The team is especially thankful to Professor Lon Porter
and the Wabash College 3D Printing and Fabrication Lab
for helping us fabricate parts.

Project related files are available on Github:
https://github.com/cbpmckinney/ece568rockets. This
includes design files for the PCB, printed components,
OpenRocket simulation, and all code.

Figure 15 shows full version of the state diagram as
discussed in the Methodology section.

Fig. 15. Integrated state machine

9

https://doi.org/10.1109/OJCOMS.2024.3433502
https://doi.org/10.1109/OJCOMS.2024.3433502
https://learn.adafruit.com/feather-rp2040-rfm95/using-the-rfm-9x-radio
https://learn.adafruit.com/feather-rp2040-rfm95/using-the-rfm-9x-radio
https://www.airspayce.com/mikem/arduino/RadioHead/classRH__RF95.html
https://www.airspayce.com/mikem/arduino/RadioHead/classRH__RF95.html
https://www.airspayce.com/mikem/arduino/RadioHead/classRHReliableDatagram.html
https://www.airspayce.com/mikem/arduino/RadioHead/classRHReliableDatagram.html
https://www.airspayce.com/mikem/arduino/RadioHead/classRHReliableDatagram.html
https://github.com/cbpmckinney/ece568rockets

	Introduction and Motivation
	Methodology
	Safety and Regulatory Requirements
	Hardware: Flight
	Rocket and Motor
	Flight Computer and Sensors
	Avionics Bay
	Ejection Charge and Recovery Mechanism
	Ignition Control

	Hardware: Ground
	Ground Computer Sensors
	Ground Computer Interface
	Ground Computer PCB and Housing

	Radio Frequency (RF) Communication
	Software and Control Flow
	Integrated State Machine
	Sensor Architecture
	UI Architecture

	Evaluation
	Static Fire and Flight Tests
	Physics and OpenRocket Simulations
	Comparison to JollyLogic Altimeter

	Discussion
	Limitations of Our Approach
	Important Lessons Learned
	Reflections on Peer Review
	Potential Future Work

	Team Contributions
	Conclusion
	Appendix

